Day 07

Denavit-Hartenberg

Links and Joints

- n joints, $n+1$ links

$$
q_{i}=\left\{\begin{array}{cc}
\theta_{i} & \text { revolute } \\
d_{i} & \text { prismatic }
\end{array}\right.
$$

- link 0 is fixed (the base)
- joint i connects link $i-1$ to link i
- link i moves when joint i is actuated

Forward Kinematics

- attach a frame $\{i\}$ to link i
b all points on link i are constant when expressed in $\{i\}$
- if joint i is actuated then frame $\{i\}$ moves relative to frame $\{i-1\}$
- motion is described by the rigid transformation

$$
T_{i}^{i-1}
$$

b the state of joint i is a function of its joint variable q_{i} (i.e., is a function of q_{i})

$$
T_{i}^{i-1}=T_{i}^{i-1}\left(q_{i}\right)
$$

- this makes it easy to find the last frame with respect to the base frame

$$
T_{n}^{0}=T_{1}^{0} T_{2}^{1} T_{3}^{2} \cdots T_{n}^{n-1}
$$

Forward Kinematics

- more generally

$$
T_{j}^{i}=\left\{\begin{array}{ccc}
T_{i+1}^{i} T_{j+2}^{i+1} \ldots T_{j}^{j-1} & \text { if } & i<j \\
I & \text { if } & i=j \\
\left(T_{j}^{i}\right)^{-1} & \text { if } & i>j
\end{array}\right.
$$

the forward kinematics problem has been reduced to matrix multiplication

Forward Kinematics

- Denavit J and Hartenberg RS, "A kinematic notation for lowerpair mechanisms based on matrices." Trans ASME J.Appl. Mech, 23:2|5-22I, 1955
- described a convention for standardizing the attachment of frames on links of a serial linkage
- common convention for attaching reference frames on links of a serial manipulator and computing the transformations between frames

Denavit-Hartenberg

$$
\begin{aligned}
T_{i}^{i-1} & =R_{z, \theta_{i}} T_{z, d_{i}} T_{x, a_{i}} R_{x, \alpha_{i}} \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$a_{i} \quad$ link length $\alpha_{i} \quad$ link twist
d_{i} link offset
θ_{i} joint angle

Denavit-Hartenberg

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

Denavit-Hartenberg

- notice the form of the rotation component

$$
\left[\begin{array}{ccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}}
\end{array}\right]
$$

* this does not look like it can represent arbitrary rotations
- can the DH convention actually describe every physically possible link configuration?

Denavit-Hartenberg

- yes, but we must choose the orientation and position of the frames in a certain way
-(DHI) $\hat{x}_{1} \perp \hat{z}_{0}$
(DH2) \hat{x}_{1} intersects \hat{z}_{0}
- claim: if DHI and DH 2 are true then there exists unique numbers

$$
a, d, \theta, \alpha \text { such that } T_{1}^{0}=R_{z, \theta} D_{z, d} D_{x, d} R_{x, \alpha}
$$

Denavit-Hartenberg

proof: on blackboard in class

DH Parameters

- a_{i} : link length
b distance between z_{i-1} and z_{i} measured along x_{i}
- α_{i} : link twist
b angle from z_{i-1} and z_{i} measured about x_{i}
- d_{i} : link offset
v distance between o_{i-1} to the intersection of x_{i} and z_{i-1} measured along z_{i-1}
- θ_{i} : joint angle
> angle from x_{i-1} and x_{i} measured about z_{i-1}

Example with Frames Already Placed

Figure 3.7: Three-link cylindrical manipulator.

Step 5: Find the DH parameters

Figure 3.7: Three-link cylindrical manipulator.

