Day 07

Denavit-Hartenberg

1/20/2013

Links and Joints

- n joints, n + 1 links
- Ink 0 is fixed (the base)
- joint *i* connects link i 1 to link *i*
 - link i moves when joint i is actuated

Forward Kinematics

- attach a frame $\{i\}$ to link i
 - all points on link *i* are constant when expressed in $\{i\}$
 - if joint *i* is actuated then frame $\{i\}$ moves relative to frame $\{i 1\}$
 - motion is described by the rigid transformation

$$T_{i}^{i-1}$$

• the state of joint *i* is a function of its joint variable q_i (i.e., is a function of q_i)

$$T_i^{i-1} = T_i^{i-1}(q_i)$$

this makes it easy to find the last frame with respect to the base frame

$$T_{n}^{0} = T_{1}^{0} T_{2}^{1} T_{3}^{2} \cdots T_{n}^{n-1}$$

Forward Kinematics

more generally

$$T_{j}^{i} = \begin{cases} T_{i+1}^{i} T_{j+2}^{i+1} \dots T_{j}^{j-1} & \text{if } i < j \\ I & \text{if } i = j \\ \left(T_{j}^{i}\right)^{-1} & \text{if } i > j \end{cases}$$

the forward kinematics problem has been reduced to matrix multiplication

Forward Kinematics

- Denavit J and Hartenberg RS, "A kinematic notation for lowerpair mechanisms based on matrices." *Trans ASME J. Appl. Mech*, 23:215–221, 1955
 - described a convention for standardizing the attachment of frames on links of a serial linkage
- common convention for attaching reference frames on links of a serial manipulator and computing the transformations between frames

$$T_{i}^{i-1} = R_{z,\theta_{i}}T_{z,d_{i}}T_{x,a_{i}}R_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a_i link length
- α_i link twist
- d_i link offset
- θ_i joint angle

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

notice the form of the rotation component

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} \end{bmatrix}$$

this does not look like it can represent arbitrary rotations
can the DH convention actually describe every physically possible link configuration?

- yes, but we must choose the orientation and position of the frames in a certain way
 - (DHI) $\hat{x}_1 \perp \hat{z}_0$
 - (DH2) \hat{x}_1 intersects \hat{z}_0
- claim: if DH1 and DH2 are true then there exists unique numbers

$$a, d, \theta, \alpha$$
 such that $T_1^0 = R_{z,\theta} D_{z,d} D_{x,a} R_{x,\alpha}$

proof: on blackboard in class

DH Parameters

- a_i : link length
 - distance between z_{i-1} and z_i measured along x_i
- α_i : link twist
 - angle from z_{i-1} and z_i measured about x_i
- d_i : link offset
 - distance between o_{i-1} to the intersection of x_i and z_{i-1} measured along z_{i-1}
- θ_i : joint angle
 - angle from x_{i-1} and x_i measured about z_{i-1}

Example with Frames Already Placed

Figure 3.7: Three-link cylindrical manipulator.

Step 5: Find the DH parameters

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^{*}	0

* joint variable

Figure 3.7: Three-link cylindrical manipulator.